|
http://fedetd.mis.nsysu.edu.tw/FED-db/cgi-bin/FED-search/view_etd?identifier=oai:www.etd.library.tcu.edu.tw:etd-0729105-181132-48&index_word=
論文英文名稱 | Effect of Gender and Development on Fetal Heart Rate Variability --- Spectral Analysis by Doppler Ultrasound |
---|
論文中文名稱 | 性別及成長過程胎兒心率變異性的變化-胎心音頻譜分析 |
---|
作者中文姓名 | 劉榮啟 |
---|
英文關鍵字 | different genderfetal developmentfetal autonomic statefetal heart rateDoppler ultrasoundpower spectral analysisfetal heart rate variabilityFetal heart sound |
---|
中文關鍵字 | 性別差異胎兒發育胎兒自主神經活性胎兒心率都卜勒超音波頻譜分析胎兒心率變異性胎心音 |
---|
英文摘要 | Fetal heart rate variability (FHRV) is the most important parameter of fetal well-being. To date, visual inspection is a more popular method to analyze FHRV, but it is relatively subjective and qualitative. To develop a non-invasive and quantitative method to detect the fetal heart rate, we recorded the fetal heart sounds of the normal pregnancy women who visiting the OPD of Yu Li Veterans Hospital for prenatal care. Fetal heart sounds were recorded for 2.5 minutes with supine position in a quite room. Fetal heart sounds were detected from a mini-microphone in conjunction with abdominal ultrasound, ultrasound fetoscope, and fetal monitor. The off-line data was analyzed by self-designed program software with fast Fourier transform and spectral analysis. Frequency domain analysis of beat-to-beat intervals including very low frequency power (VLF, 0.003-0.04 Hz), low frequency power (LF, 0.04-0.15 Hz), high frequency power (HF, 0.15-0.4 Hz) and the ratio of LF to HF (LF/HF) were performed. Ninety-four recording trials from 76 pregnancy women were recorded in this study and 48 were selected to be quantitatively analyzed. Three groups were defined: 1st trimester (gestational age of 9-14 week, N = 5); 2nd trimester (gestational age of 15-28 weeks, N = 18) and 3rd trimester (gestational age of 29-41 weeks, N = 25). The results showed that fetal heart rate was decreased by gestational age significantly. VLF, LF, HF and TP were increased significantly and LF/HF decreased in the 3rd trimester. Heart rate of male fetus was significantly higher than female only in the 3rd trimester. We concluded that Power spectral analysis of FHRV is a non-invasive, convenient method and spectral analysis of fetal heart rate variability by Doppler ultrasound is feasible. The heart rate of male fetus was higher than female significantly in the third trimester. It seems that the parasympathetic activity of fetal autonomic state was increased significantly in the 3rd trimester. And the decrease of LF/HF may be the indicator of maturity of autonomic nervous system in fetal development. |
---|
中文摘要 | 胎兒心率變異性是評估胎兒健康狀況很重要的指標。過去都是以目測法來測量胎兒心率變異性,常常會有不準確和主觀的影響。已知胎兒心率會隨著懷孕週數增加而變慢,這和自主神經發育及成熟有關。於成人的研究中已知心率變異性的頻譜分析證實可以反應自主神經活性,若能經由胎兒心率變異性測出自主神經活性,將可以對胎兒的自主神經發育有更近一步了解。本論文主要是利用原來診間所使用的工具,發展一個非侵襲性、定量性的胎兒心率變異性測量方法及評估胎兒性別及發育階段對心率變異性的影響。研究對象來源為玉里榮民醫院婦產科產檢的懷孕婦女,胎兒懷孕週齡分佈為9-41週。實驗方法是在一安靜環境下,孕婦保持仰臥姿勢,測量胎心音方式如同一般產檢,分別以腹部超音波、胎心筒或胎兒監視器的檢查外加自製的迷你麥克風、IBM相容電腦,收錄2.5分鐘的胎兒心音。將取得的超音波心音資料以郭博昭教授所設計的軟體進行離線分析,包括計算心跳間距及心率頻譜分析的測量。受測者共有76人,一共完成了94人次在不同懷孕週數的胎心音記錄。排除訊號較差者,留下48人次納入分析。受測結果共分為3組:懷孕第一期 (9-14週) 共5人次、懷孕第二期 (15-28週) 共18人次、懷孕第三期 (29-41週) 共25人次。心率頻譜分析值包括總功率 (total power) 、超低頻功率 (VLF, 0.003-0.04 Hz) 、低頻功率 (LF, 0.04-0.15 Hz) 、高頻功率 (HF, 0.15-0.4 Hz) 、低頻與高頻比值 (LF/HF) 。實驗結果顯示胎兒未分期即可見到心率隨著懷孕週數顯著下降,心率變異之TP、VLF、LF、HF均隨著懷孕週數顯著增加。進一步分成3期則看到胎兒心率在懷孕第二期、第三期都有顯著下降。在懷孕第三期心率變異性之VLF、 LF、 HF及TP均顯著增加,比第二期高。而LF/HF則顯著下降,比第二期低。其中VLF同時高於第一期及第二期。在性別差異方面男性胎兒心率比較快,心率變異性之VLF、 LF、 HF及TP則女性有較高的趨勢,但不具統計意義。唯男性胎兒在懷孕第三期心率明顯比女性快。由以上的結果我們的結論是利用胎心音頻譜分析來測量胎兒心率變異性是一個方便、非侵襲性而且可行的方法。胎兒心率變異性隨著懷孕週齡增加而明顯增加,在懷孕第三期特別明顯。其中TP、VLF、LF及HF明顯增加,LF/HF 明顯下降。而且在懷孕第三期男性的心率明顯比女性快。同時可能顯示胎兒自主神經系統之副交感神經對心率的調控在懷孕第三期明顯增加而LF/HF的顯著下降可能是代表自主神經成熟的指標。 |
---|
統計 | 本論文已被瀏覽 43 次,造訪原文 6 次 |
---|
畢業學校 | 慈濟大學 |
---|
出版單位 | 慈濟大學 |
---|
論文目次 | 中文摘要………………………………..…………………………………I 英文摘要………………………………..……………………….………III 目錄………………………………………..……………………..V 研究背景………………………………..………………………..…………1 胎兒心率變異性對臨床的重要性…………………..………………….…1 胎兒自主神經對心臟調控的發育……………………..……………..….3 性別對心率變異性的影響………………………………………………..6 年齡對心率變異性的影響…………………………………………….…8 胎兒心率的調控…………….……………………………………………9 胎兒心率變異性與自主神經活性………………………………………13 成人心率變異性頻譜分析及其應用……………………………………..14 胎兒心率變異性的研究和應用現況….………………………………....17 目前胎兒心率變異性的測量方法………………………………………20 研究動機與目的……………………………………………………….22 研究動機………………………………………………………………….22 研究目的…………………………………………………………………24 重要性…………………………………………………………………...24 研究材料與方法…………………………………………………25 研究對象及實驗分組……………………………………………………25 實驗儀器……………………………………………………..………….25 測量胎心音的工具……………………………………………………25 錄音工具…………………………………………………..……….…25 分析工具……………………………………………….……………..26 實驗步驟…………………………………………………………………26 胎心音記錄……………………………………………….……...………26 頻譜分析………………………….…………………….…………..……27 統計分析……………………….…………………………………..….…28 研究結果………………………………………..……………...28 各組基本資料分析…………………………………………….………28 胎心音原始資料及頻譜分析……………….…………………………29 年齡對胎兒心率變異性之影響………………………………....………30 性別對胎兒心率變異性之影響……………………………….………30 討論………………………………………..…………………….31 性別對胎兒心率變異性之影響………………………..…….….………31 年齡對胎兒心率變異性之影響…………………………..…..……… 32 胎兒心率變異性與自主神經之相關……………………………………34 用胎心音偵測心跳間距當做頻譜分析的資料來源:正確性、可行性….36 胎兒心率變異性的頻譜分析所面臨的問題………..………………….37 胎兒心率變異性的頻譜分析和成人、新生兒的比較………………….38 將來的臨床應用…………………………………………….…………..39 本論文之貢獻……………………………………………………………39 本論文之缺點……………………………………………………………40 結論………………………………………………………..…….43 附表…………………………………………………………….44 附圖…………………………………………………………….47 附件…………………………………………………………….55 參考文獻……………………………………………………….58 |
---|
參考文獻 | 參考文獻 Abboud, S. & Sadeh, D. (1990). Power spectrum analysis of fetal heart rate variability using the abdominal maternal electrocardiogram. Journal of Biomedical Engineering, 12, 161-164. Akselrod, S., Gordon, D., Ubel, F.A., Shannon, D.C., Berger, R.D. & Cohen, R.J. (1981). Power spectral analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control. Science, 213, 220-222. Barrett, C.T., Heymann, M.A. & Rudolph, A.M. (1972). Alpha and beta adrenergic function in fetal sheep. American Journal of Obestetrics & Gynecology, 112, 1114-1121. Bigger, J.T., Fleiss, J.L., Steinman, R.C., Rolnitzky, L.M., Schneider, W.J. & Stein, P.K. (1995). RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation, 91, 1936-1943. Bozoki, Z. (1997). Chaos theory and power spectrum analysis in computerized cardiotocography. European Journal of Obstetrics & Gynecology and Reproductive Biology, 71, 163-168. Brevorowicz, G., Moczko, J. & Gadzinowski, J. (1988). Quantification of the fetal heart rate variability by spectral analysis in growth-retarded fetuses. Gynecologic & Obstetric Investigation, 25, 186-191. Casolo, G., Balli, E., Taddei, T., Amuhasi, J. & Gori, C. (1989). Decreased spontaneous heart rate variability on congestive heart failure. American Journal of Cardiology, 64, 1162-1167. Chaffin, D.G., Goldberg, C.C. & Reed, K.L. (1991). The dimension of chaos in the fetal heart rate. American Journal of Obestetrics & Gynecology, 165, 1425-1429. Chatow, U., Davidson, S., Reichman, B.L. & Akselrod, S. (1995). Development and maturation of the autonomic nervous system in premature and full-term infants using spectral analysis of heart rate fluctuations. Pediatric Research, 37, 294-302. Chess, G.F. , La Belle, K.S., Milne, J.K. & Calaresu, F.R. (1975). Spectral analysis as a diagnostic aid in the management of high-risk pregnancy. American Journal of Obestetrics & Gynecology, 121, 471-474. Chung, D.Y., Sim, Y.B., Park, K.T., Yi, S.H., Shin, J.C. & Kim, S.P. (2001). Spectral analysis of fetal heart rate variability as a predictor of intrapartum fetal distress. International Journal of Gynecology & Obstetrics, 73, 109-116. Dalton, K.J., Dawes, G.S. & Patrick, J.E. (1983). The autonomic nervous system and fetal heart rate variability. American Journal of Obestetrics & Gynecology, 146, 4, 456-462. Del Rio, G., Verlardo, A., Zizzo, G., Marrama, P. & Della Casa, L. (1993). Sex differences in catecholamine response to clonidine. International Journal of Obesity & Related Metabolic Disorders, 17, 465-469. Dipietro, J.A., Hodgson, D.M., Costigan, K.A., Hilton, S.C. & Johnson, T.R.B. (1996). Fetal neurobehavioral development. Child Development, 67, 2553-2567. Ferrazzi, E., Pardi, G., Setti, P.L., Rodolfi, M., Civardi, S. & Cerutti, S. (1989). Power spectral analysis of the fetal heart rate of the human fetus at 26 and 36 weeks of gestation. Clinical Physics and Physiological Measurement, 10, 57-60. Fleisher, L.A., Dipeitro, J.A., Johnson, T.R. & Pincus, S. (1997). Complementary and non-coincident increases in heart rate variability and irregularity during fetal development. Clinical Science, 92, 345-349. Gardner, E. & O’Rahilly, R. (1976). The nerve supply and conductive system of the human heart at the end of the embryonic period proper. Journal of Anatomy, 121, 571-581. Genuis, S., Genuis, S.K. & Chang, W.C. (1996). Antenatal fetal heart rate and maternal intuition as predictors of fetal sex. The Journal of Reproductive Medicine, 41, 447-449. Gough, N.A.J. (1992). Fractral, chaos, and fetal heart rate. Lancet, 339, 182-183. Hon, E. H. & Lee, S.T. (1965). Electronic evaluation of the fetal heart rate patterns preceding fetal death: further observation. American Journal of Obestetrics & Gynecology, 87, 814-826. Huikuri, H.V., Pikkujamsa, S.M., Airaksinen, K.E., Ikaheimo, M.J., Rantala, A.O., Kauma, H., Lilja, M. & Kesaniemi, Y.A. (1996). Sex-related differences in autonomic modulation of heart rate in middle-aged subjects. Circulation, 94, 122-125. Inoue, K., Miyake, S., Kumashiro, M., Ogata, H. & Yoshimura, O. (1990). Power spectral analysis of heart rate variability in traumatic quadriplegic humans. American Journal of Physiology, 258, H1722-H1726. Karin, J., Hirsch, M. & Akselrod, S. (1993). An estimate of fetal autonomic state by spectral analysis of fetal heart rate fluctuations. Pediatric Research, 34, 134-138. Kimura, Y., Okamura, K. & Yajima A. (1996). Spectral analysis of beat-to-beat intervals of the fetal heart obtained by Doppler ultrasound. Gynecologic & Obstetric Investigation, 41, 5-9. Kimura, Y., Okamura, K., Watanabe, T., Murotsuki, J., Suzuki, T., Yano, M. & Yajima A. (1996). Power spectral analysis for autonomic influences in heart rate and blood pressure variability in fetal lambs. American Journal of Physiology, 271, H1333-H1339. Kleiger, R. E., Miller, J. P., Bigger, J. T. & Moss, A. J. (1987). Decrease heart rate variability and its association with increased mortality after acute myocardial infarction. American Journal of Cardiology, 59, 256-262. Kobayashi, H., Yoshida, A., Kobayashi, M., Hamada,T., Noguchi, Y & Yamada, T. (2003). A new computerized analysis to precisely evaluate heart rate variability during the nonstress test. American Journal of Perinatology, 20, 77-86. Kuo, T.B.J., Lin, T., Yang, C.C.H., Li, C.L., Chen, C.F. & Chou, P. (1999). Effect of aging on gender differences in neural control of heart rate. American Journal of Physiology, 277, H2233-H2239. Kuo, T.B.J. & Yang, C.C. (2002). Sexual dimorphism in the complexity of cardiac pacemaker activity. American Journal of Physiology, 283, H1695-H1702. Lindecrantz, K., Cerutti, S., Civardi, S., Hokegard, K.H., Lilja, H., Rosen, K.G., Signorini, M.G. & Widmark, C. (1993). Power spectral analysis of the fetal heart rate during noradrenaline infusion and acute hypoxemia in the chronic fetal lamb preparation. International Journal of Bio-medical Computing, 33, 199-207. Long, W.A., Henry, W. & Llanos, A.J. (1998). Autonomic and central neuroregulation of fetal cardiovascular function. Fetal and Neonatal Physiology, second edition, 943-961. Luine, V.N. (1985). Estradiol increase choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Experimental Neurology, 89, 484-490. Matsuda, Y., Maeda, T. & Kouno, S. (2003). The critical period of non-reassuring fetal heart rate patterns in preterm gestation. European Journal of Obstetrics & Gynecology & Reproductive Biology, 106, 36-39. Mendez-Bauer, C., Poseirio, J.J. & Arellano-Hernandez, G. (1963). Effects of atropine on the heart rate of the human fetus during labor. American Journal of Obestetrics & Gynecology, 85, 1033-1053. Min, S.W., Ko, H. & Kim, C.S. (2002). Power spectral analysis of heart rate variability during acute hypoxia in fetal lambs. Acta Obstetricia et Gynecologia Scandinavica, 81, 1001-1005. Nijuis, J.G., Prechtl, H.F., Martin, C.B. & Bots, R.S. (1982). Are there behavioral states in the human fetus ? Early Human Development, 6, 177-195. O’Connor, G.T., Buring, J.E., Yusuf, S., Goldhaber, S.Z., Olmstead, E.M., Paffenbarger, R.S. & Hennekens, C.H. (1989). An overview of randomized trails of rehabilitation with exercise after myocardial ifarction. Circulation, 80, 234-244. O’Malley, C.A., Hautamaki, R.D., Kelley, M. & Meyer, E.M., (1987). Effects of ovariectomy and estradiol benzoate to high affinity choline uptake, ACh synthesis, and release from rat cerebral cortical synaptosomes. Brain Research, 403, 389-392. Oguch, O. & Steer, P. (1998). Gender does not affect heart rate variation. British Journal of Obstetrics & Gynaecology, 105, 1312-1314. Pagani, M., Malfatto, G., Pierini, S., Casati, R., Masu, A.M., Poli, M., Guzzetti, S., Lombardi, F., Cerutti, S. & Malliani, A. (1988). A spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. Journal of Autonomic Nervous System, 1988, 23, 143-153. Papp, J.G. (1988). Autonomic responses and neurohumoral control in the human early antenatal heart. Basic Research in Cardiology, 83, 2-9. Pappano, A.J. (1977). Ontogenic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts. Pharmacological Reviews, 29, 3-33. Parer, J.T. (1984). The effect of atropine on heart rate and oxygen consumption of the hypoxia fetus. American Journal of Obestetrics & Gynecology, 148, 1118-1121. Parer, J.T. (1997). Handbook of fetal heart rate monitoring, second edition, Saunders. Parer, W.J., Parer J.T., Holbrook, R.H. & Block, B.S.B. (1985). Validity of mathematical methods of quantitating fetal heart rate variability. American Journal of Obestetrics & Gynecology, 153, 402-409. Paul, R.H., Suidan, A.K., Yeh, S.Y., Schifrin, B.S. & Hon, E.H. (1975). Clinical fetal monitoring. VII. The evaluation and significance of intrapartum baseline FHR variaibility. American Journal of Obestetrics and Gynecology, 123, 206-210. Pillai, M. & James, D. (1990). The development of fetal heart rate patterns during normal pregnancy. Obstetrics & Gynecology, 76, 812-816. Polin, R.A. & Fox, W.W. (1988). Fetal & Neonatal Physiology, second edition, Saunders. Pomeranz, B., Macaulay, R.J.B., Caudill, M.A., Kutz, I., Adam, D., Gordon, D., Kilborn, K.M., Barger, A.C., Shannon, D.C., Cohen, R.J. & Benson, H. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. American Journal of Physiology, 248, H151-H153. Renou, P., Newman, W. & Wood, C. (1969). Autonomic control of fetal heart rate. American Journal of Obestetrics & Gynecology, 105, 946-953. Reyes, F.I., Winter, J.S. & Faiman, C. (1973). Studies on human sexual development. I. Fetal gonal and adrenal sex steroids. The Journal of Clinical Endocrinology & Metabolism, 37, 74-78. Rochard, F., Schifrin, B.S., Goupil, F., Legrand, H., Blottiere, J. & Sureau, C. (1976). Nonstessed fetal heart rate monitoring in the antepartum period. American Journal of Obestetrics & Gynecology, 129, 699-702. Saleh, T.M., & Connell, B.J. (1999). Centrally mediated effect of 17beta-estradiol on parasympathetic tone in male rats. American Journal of Physiology, 276, R474-R481. Saleh, T.M. & Connell, B.J. (2000). 17beta-estradiol modulates baroreflex sensitivity and autonomic tone of female rats. Journal of the Autonomic Nervous System, 80, 148-161. Sands, K.E., Appel, M.L., Lilly, L.S., Schoen, F.J., Mudge, G.H. & Cohen, R.J. (1989). Power spectral analysis of heart rate variability in human cardiac transplant recipients. Circulation, 79, 76-82. Schifferli, P.U. & Caldeyro-Barcia, R. (1973). Fetal pharmacology, 259-279. Sibony, O., Fouillot, J.P., Benaoudia, M., Benhalla, A., Oury, J.F., Sureau, C. & Blot, P. (1994). Quantification of the fetal heart rate variability by spectral analysis of fetal well-being and fetal distress. European Journal of Obstetrics & Gynecology & Reproductive Biology, 54, 103-108. Stearns, S.D. & David, R.A. (1988). Signal Processing Algorithms, Englewood Cliffs, NY: Prentice-Hall. Suzuki, T., Kimura, Y., Murotsuki, J., Murakami, T., Uehara, S. & Okamura, K. (2001). Detection of a biorhythm of human fetal autonomic nervous activity by a power spectral analysis. American Journal of Obestetrics & Gynecology, 185, 1247-1252. Suzuki, T., Okamura, K., Kimura, Y., Watanabe, T., Murotsuki, J., Yaegashi, N., Murotsuki, J., Uehara, S. & Yajima, A. (2000). Power spectral analysis of R-R interval variability before and during the sinusoidal heart rate pattern in fetal lambs. American Journal of Obestetrics & Gynecology, 182, 1227-1232. Symonds, E.M., Sahota, D. & Chang, A. (2001). Fetal electrocardiography, Imperial College Press. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation, 93, 1043-1065. Tezuka, N., Sato, S., Banzai, M., Saito, H., Hiroi, M. (1998). Development and sexual difference in embryonic heart rates in pregnancies resulting from in vitro fertilization. Gynecologic & Obstetric Investigation, 46, 217-219. Umetani, K., Singwer, D.H., McCraty, R. & Atkinson, M. (1998). Twenty-four hour time domain heart rate variability and heart rate: relations to age and genderover nine decades. Journal of the American College of Cardiology, 31, 593-601. Ursem, N.T.C., Kempski, M.H., Ridder, M.A.J., Clark, E.B. & Wladimiroff, J.W. (1998). An estimate of fetal autonomic state by spectral analysis of human umbilical artery flow velocity waveforms. Cardiovascular Research, 37, 601-605. Vapaavuori, E.K., Shinebourne, E.A., Willian, R.L., Heymann, M.A. & Rudolph, A.M. (1973). Development of cardiovascular responses to autonomic blockade in intact fetal and neonatal lambs. Biology of the Neonate, 22, 177-188. Walker, A.M., Cannata, J., Matz, S., Ritchie, B. & Maloney, J.E. (1978). Sympathetic and parasympathetic control of heart rate in unanesthetised fetal and neonatal lambs. Biology of the Neonate, 33, 135-143. Walker, D. (1974). Functional development of the autonomic innervation of human fetal heart. Biology of the Neonate, 25, 31-43. Westgate, J.A., Bennet, L. & Alistair, J.G. (1999). Fetal heart rate variability changes during brief repeated umbilical cord occlusion in near term fetal sheep. British Journal of Obstetrics & Gynecology, 106, 664-671. Yien, H.W., Hseu, S.S., Lee, L.C., Kuo, T.B.J., Lee, T.Y. & Chan, S.H.H. (1997). Spectral analysis of systemic arterial pressure and heart rate signals as a prognostic tool for the prediction of patient outcome in the intensive care unit. Critical Care Medicine, 25, 258-266. |
---|
口試委員 | 楊靜修 - 指導教授 郭博昭 - 指導教授
|
---|
核准日期 | 2005-07-29 |
---|
類型 | Electronic Thesis or Dissertation |
---|
格式 | application/pdf |
---|
全文資料 | 校內外皆可取得 |
---|
詳細資料暨全文 | http://www.etd.library.tcu.edu.tw/ETD-db/ETD-search-c/view_etd?URN=etd-0729105-181132-48 |
---|
語言 | Chi |
---|
權限 | Copyright information available at source archive--Tzu Chi University |
---|
|